• Welcome to BirdForum, the internet's largest birding community with thousands of members from all over the world. The forums are dedicated to wild birds, birding, binoculars and equipment and all that goes with it.

    Please register for an account to take part in the discussions in the forum, post your pictures in the gallery and more.
ZEISS DTI thermal imaging cameras. For more discoveries at night, and during the day.

Bipedal locomotion (1 Viewer)

Fred Ruhe

Well-known member
Netherlands
C. J. Clemente, P. J. Bishop, N. Newman and S. A. Hocknull, 2017

Steady bipedal locomotion with a forward situated whole-body centre of mass: the potential importance of temporally asymmetric ground reaction forces.

Journal of Zoology (advance online publication)

DOI: 10.1111/jzo.12521

http://onlinelibrary.wiley.com/doi/10.1111/jzo.12521/full

Abstract:

Bipedalism has repeatedly evolved in many independent lineages throughout tetrapod history. Despite being widespread, the fundamental biomechanical factors involved in bipedalism remain unclear. This study experimentally investigated bipedalism in facultatively bipedal lizards and obligatorily bipedal birds to explore temporal asymmetry in the vertical component of the ground reaction force (Fz). Both lizards and birds showed significant temporal asymmetry – with higher vertical forces exerted earlier in the stance – as indicated by three different measures computed from force-time profiles. This result parallels those reported previously for other bipedal animal groups that have a forward situated whole-body centre of mass (COM), such as kangaroos and non-human primates. Humans, in contrast, exhibit an orthograde posture with the COM close the hips, and show little temporal asymmetry in Fz, particularly during walking. Across a wide range of quadrupedal animals, temporal asymmetry is quite variable. Collectively, these results suggest that an ‘early-skewed’ Fz may be an important feature of steady bipedal locomotion when the COM is forward of the hips, although an exact mechanism of cause-and-effect, if one exists, remains to be established. This finding has relevance for attempts at better understanding bipedal locomotion in extinct animals that likely had a COM located forward of the hips, such as carnivorous dinosaurs.

Enjoy,

Fred
 
Warning! This thread is more than 6 years ago old.
It's likely that no further discussion is required, in which case we recommend starting a new thread. If however you feel your response is required you can still do so.

Users who are viewing this thread

Back
Top