• Welcome to BirdForum, the internet's largest birding community with thousands of members from all over the world. The forums are dedicated to wild birds, birding, binoculars and equipment and all that goes with it.

    Please register for an account to take part in the discussions in the forum, post your pictures in the gallery and more.
ZEISS DTI thermal imaging cameras. For more discoveries at night, and during the day.

Raptor talon shape and biomechanical performance are controlled by relative prey size (1 Viewer)

Fred Ruhe

Well-known member
Netherlands
Leah R. Tsang, Laura A. B. Wilson, Justin Ledogar, Stephen Wroe, Marie Attard & Gabriele Sansalone, 2019

Raptor talon shape and biomechanical performance are controlled by relative prey size but not by allometry.

Scientific Reports 9, Article number: 7076
DOI: https://doi.org/10.1038/s41598-019-43654-0

https://www.nature.com/articles/s41598-019-43654-0

Free pdf:

https://www.nature.com/articles/s41598-019-43654-0.pdf

Abstract:

Most birds of prey (raptors), rely heavily on their talons for capturing prey. However, the relationship between talon shape and the ability to take prey is poorly understood. In this study we investigate whether raptor talons have evolved primarily in response to adaptive pressures exerted by different dietary demands, or if talon morphology is largely constrained by allometric or phylogenetic factors. We focus on the hallux talon and include 21 species in total varying greatly in body mass and feeding ecology, ranging from active predation on relatively large prey to obligate scavenging. To quantify the variation in talon shape and biomechanical performance within a phylogenetic framework, we combined three dimensional (3D) geometric morphometrics, finite element modelling and phylogenetic comparative methods. Our results indicate that relative prey size plays a key role in shaping the raptorial talon. Species that hunt larger prey are characterised by both distinct talon shape and mechanical performance when compared to species that predate smaller prey, even when accounting for phylogeny. In contrast to previous results of skull-based analysis, allometry had no significant effect. In conclusion, we found that raptor talon evolution has been strongly influenced by relative prey size, but not allometry and, that talon shape and mechanical performance are good indicators of feeding ecology.

Enjoy,

Fred
 
Warning! This thread is more than 5 years ago old.
It's likely that no further discussion is required, in which case we recommend starting a new thread. If however you feel your response is required you can still do so.

Users who are viewing this thread

Back
Top