albertonykus
Well-known member
A special issue on the biology of the avian respiratory system has been published in Philosophical Transactions of the Royal Society B.
Papers with particular relevance to avian paleontology include the following:
O'Connor, J.K. (2025)
Insights into the early evolution of modern avian physiology from fossilized soft tissues from the Mesozoic
Philosophical Transactions of the Royal Society B 380: 20230426
doi: 10.1098/rstb.2023.0426
Modern birds (Neornithes) are the mostly [sic] highly modified group of amniotes, bearing little resemblance to other extant sauropsids. Archaeopteryx, with its nearly modern wings but plesiomorphic skeleton, demonstrated more than 160 years ago that soft tissue specializations preceded skeletal modifications for flight. Soft tissues are thus of great importance for understanding the early evolution of modern avian physiology. Most commonly, traces of the integumentary system are preserved; exceptional discoveries include remnants of organs. Together, these have helped to elucidate the evolution of the lungs, ovaries, plumage and beak in early diverging birds. These fossils reveal that many important adaptations for efficient digestion, high oxygen intake, reduced body mass and improved wing structure, all of which serve to improve aerial capabilities and/or meet the energetic demands of this costly form of locomotion, evolved within the first 20–30 Myr of avian evolution. Soft tissue preservation also provides important clues for understanding the ecology of early diverging birds and may even elucidate the extinction of certain groups. However, the current fossil record of Mesozoic avian soft tissues is almost entirely limited to the Early Cretaceous and thus, discoveries from the Late Cretaceous have the potential to drastically transform our interpretation of the available data.
Burton, M.G., J. Benito, K. Mellor, E. Smith, E. Martin-Silverstone, P. O'Connor, and D.J. Field (2025)
The influence of soft tissue volume on estimates of skeletal pneumaticity: implications for fossil archosaurs
Philosophical Transactions of the Royal Society B 380: 20230428
doi: 10.1098/rstb.2023.0428
Air space proportion (ASP), the volume fraction in bone that is occupied by air, is frequently applied as a measure for quantifying the extent of skeletal pneumaticity in extant and fossil archosaurs. Nonetheless, ASP estimates rely on a key assumption: that the soft tissue mass within pneumatic bones is negligible, an assumption that has rarely been explicitly acknowledged or tested. Here, we provide the first comparisons between estimated air space proportion (where the internal cavity of a pneumatic bone is assumed to be completely air-filled) and true air space proportion (ASPt, where soft tissues present within the internal cavities of fresh specimens are considered). Using birds as model archosaurs exhibiting postcranial skeletal pneumaticity, we find that estimates of ASPt are significantly lower than estimates of ASP, raising an important consideration that should be acknowledged in investigations of the evolution of skeletal pneumaticity and bulk skeletal density in extinct archosaurs, as well as in volume-based estimates of archosaur body mass. We advocate for the difference between ASP and ASPt to be explicitly acknowledged in studies seeking to quantify the extent of skeletal pneumaticity in extinct archosaurs, to avoid the risk of systematically overestimating the volume fraction of pneumatic bones composed of air.
Schachner, E.R. and A.J. Moore (2025)
Unidirectional airflow, air sacs or the horizontal septum: what does it take to make a bird lung?
Philosophical Transactions of the Royal Society B 380: 20230418
doi: 10.1098/rstb.2023.0418
In this review, we evaluate the differences between the pulmonary anatomy of birds and other sauropsids, specifically those traits that make the avian respiratory system distinct: a fully decoupled and immobilized, isovolumetric gas-exchanging lung separated from compliant ventilatory air sacs by a horizontal septum. Imaging data, three-dimensional digital anatomical models and dissection images from a red-tailed hawk (Buteo jamaicensis), common ostrich (Struthio camelus), barred owl (Strix varia), African grey parrot (Psittacus erithacus) and zebra finch (Taeniopygia castanotis) are used to demonstrate the anatomical variation seen in the pulmonary air sacs, diverticula and the horizontal septum. We address the current state of knowledge regarding the avian respiratory system and the myriad areas that require further study, including the comparative and quantitative ecomorphology of the bronchial tree and air sacs, the non-ventilatory functions of the sacs and diverticula, the fluid dynamics and anatomical mechanisms underlying unidirectional airflow, post-cranial skeletal pneumaticity, and how all of these factors impact reconstructions of respiratory tissues in extinct archosaurs, particularly ornithodirans (i.e. pterosaurs + non-avian dinosaurs). Specifically, we argue that without evidence for the horizontal septum, a fully avian lung should not be reconstructed in non-avian ornithodirans, despite the presence of post-cranial skeletal pneumaticity.
Moore, A.J. and E.R. Schachner (2025)
When the lung invades: a review of avian postcranial skeletal pneumaticity
Philosophical Transactions of the Royal Society B 380: 20230427
doi: 10.1098/rstb.2023.0427
Birds are unique among extant tetrapods in exhibiting air-filled cavities that arise from the respiratory system and invade postcranial bones, a phenomenon called postcranial skeletal pneumaticity (PSP). These intraosseous cavities originate from diverticula of the ventilatory air sacs or directly from the gas-exchanging lung. Despite a long history of study, many of the basic characteristics of this system remain poorly understood. In this hybrid review, we synthesize insights from the anatomical, developmental, biomechanical and paleontological literature to review the functional and evolutionary significance of PSP. Leveraging new data, we confirm that the skeletons of pneumatic birds are not less heavy for their mass than those of apneumatic birds. Pneumatic skeletons may nonetheless be lightweight with respect to body volume, but this is a hypothesis that remains to be empirically tested. We also use micro-computed tomography scanning and deep learning-based segmentation to produce a pilot model of the pneumatized spaces in the neck of a Mallard (Anas platyrhynchos). This approach facilitates accurate modelling of bone architecture for quantitative comparative analysis within and between pneumatic taxa. Future work on PSP should focus on the cellular mechanisms and developmental processes that govern the onset and extent of pneumatization, which are essentially unknown.
Papers with particular relevance to avian paleontology include the following:
O'Connor, J.K. (2025)
Insights into the early evolution of modern avian physiology from fossilized soft tissues from the Mesozoic
Philosophical Transactions of the Royal Society B 380: 20230426
doi: 10.1098/rstb.2023.0426
Modern birds (Neornithes) are the mostly [sic] highly modified group of amniotes, bearing little resemblance to other extant sauropsids. Archaeopteryx, with its nearly modern wings but plesiomorphic skeleton, demonstrated more than 160 years ago that soft tissue specializations preceded skeletal modifications for flight. Soft tissues are thus of great importance for understanding the early evolution of modern avian physiology. Most commonly, traces of the integumentary system are preserved; exceptional discoveries include remnants of organs. Together, these have helped to elucidate the evolution of the lungs, ovaries, plumage and beak in early diverging birds. These fossils reveal that many important adaptations for efficient digestion, high oxygen intake, reduced body mass and improved wing structure, all of which serve to improve aerial capabilities and/or meet the energetic demands of this costly form of locomotion, evolved within the first 20–30 Myr of avian evolution. Soft tissue preservation also provides important clues for understanding the ecology of early diverging birds and may even elucidate the extinction of certain groups. However, the current fossil record of Mesozoic avian soft tissues is almost entirely limited to the Early Cretaceous and thus, discoveries from the Late Cretaceous have the potential to drastically transform our interpretation of the available data.
Burton, M.G., J. Benito, K. Mellor, E. Smith, E. Martin-Silverstone, P. O'Connor, and D.J. Field (2025)
The influence of soft tissue volume on estimates of skeletal pneumaticity: implications for fossil archosaurs
Philosophical Transactions of the Royal Society B 380: 20230428
doi: 10.1098/rstb.2023.0428
Air space proportion (ASP), the volume fraction in bone that is occupied by air, is frequently applied as a measure for quantifying the extent of skeletal pneumaticity in extant and fossil archosaurs. Nonetheless, ASP estimates rely on a key assumption: that the soft tissue mass within pneumatic bones is negligible, an assumption that has rarely been explicitly acknowledged or tested. Here, we provide the first comparisons between estimated air space proportion (where the internal cavity of a pneumatic bone is assumed to be completely air-filled) and true air space proportion (ASPt, where soft tissues present within the internal cavities of fresh specimens are considered). Using birds as model archosaurs exhibiting postcranial skeletal pneumaticity, we find that estimates of ASPt are significantly lower than estimates of ASP, raising an important consideration that should be acknowledged in investigations of the evolution of skeletal pneumaticity and bulk skeletal density in extinct archosaurs, as well as in volume-based estimates of archosaur body mass. We advocate for the difference between ASP and ASPt to be explicitly acknowledged in studies seeking to quantify the extent of skeletal pneumaticity in extinct archosaurs, to avoid the risk of systematically overestimating the volume fraction of pneumatic bones composed of air.
Schachner, E.R. and A.J. Moore (2025)
Unidirectional airflow, air sacs or the horizontal septum: what does it take to make a bird lung?
Philosophical Transactions of the Royal Society B 380: 20230418
doi: 10.1098/rstb.2023.0418
In this review, we evaluate the differences between the pulmonary anatomy of birds and other sauropsids, specifically those traits that make the avian respiratory system distinct: a fully decoupled and immobilized, isovolumetric gas-exchanging lung separated from compliant ventilatory air sacs by a horizontal septum. Imaging data, three-dimensional digital anatomical models and dissection images from a red-tailed hawk (Buteo jamaicensis), common ostrich (Struthio camelus), barred owl (Strix varia), African grey parrot (Psittacus erithacus) and zebra finch (Taeniopygia castanotis) are used to demonstrate the anatomical variation seen in the pulmonary air sacs, diverticula and the horizontal septum. We address the current state of knowledge regarding the avian respiratory system and the myriad areas that require further study, including the comparative and quantitative ecomorphology of the bronchial tree and air sacs, the non-ventilatory functions of the sacs and diverticula, the fluid dynamics and anatomical mechanisms underlying unidirectional airflow, post-cranial skeletal pneumaticity, and how all of these factors impact reconstructions of respiratory tissues in extinct archosaurs, particularly ornithodirans (i.e. pterosaurs + non-avian dinosaurs). Specifically, we argue that without evidence for the horizontal septum, a fully avian lung should not be reconstructed in non-avian ornithodirans, despite the presence of post-cranial skeletal pneumaticity.
Moore, A.J. and E.R. Schachner (2025)
When the lung invades: a review of avian postcranial skeletal pneumaticity
Philosophical Transactions of the Royal Society B 380: 20230427
doi: 10.1098/rstb.2023.0427
Birds are unique among extant tetrapods in exhibiting air-filled cavities that arise from the respiratory system and invade postcranial bones, a phenomenon called postcranial skeletal pneumaticity (PSP). These intraosseous cavities originate from diverticula of the ventilatory air sacs or directly from the gas-exchanging lung. Despite a long history of study, many of the basic characteristics of this system remain poorly understood. In this hybrid review, we synthesize insights from the anatomical, developmental, biomechanical and paleontological literature to review the functional and evolutionary significance of PSP. Leveraging new data, we confirm that the skeletons of pneumatic birds are not less heavy for their mass than those of apneumatic birds. Pneumatic skeletons may nonetheless be lightweight with respect to body volume, but this is a hypothesis that remains to be empirically tested. We also use micro-computed tomography scanning and deep learning-based segmentation to produce a pilot model of the pneumatized spaces in the neck of a Mallard (Anas platyrhynchos). This approach facilitates accurate modelling of bone architecture for quantitative comparative analysis within and between pneumatic taxa. Future work on PSP should focus on the cellular mechanisms and developmental processes that govern the onset and extent of pneumatization, which are essentially unknown.