• Welcome to BirdForum, the internet's largest birding community with thousands of members from all over the world. The forums are dedicated to wild birds, birding, binoculars and equipment and all that goes with it.

    Please register for an account to take part in the discussions in the forum, post your pictures in the gallery and more.
ZEISS DTI thermal imaging cameras. For more discoveries at night, and during the day.

Skull shape predicts feeding ecology in vultures (2 Viewers)

albertonykus

Well-known member
A new study that discusses some extinct raptors:

Steinfield, K.R., R.N. Felice, M.E. Kirchner, and A. Knapp (2023)
Carrion converging: skull shape predicts feeding ecology in vultures
Journal of Zoology (advance online publication)
doi: 10.1111/jzo.13127

The link between skull shape and dietary ecology in birds at macroevolutionary scales has recently been called into question by analyses of 3D shape that reveal that cranial anatomy is mainly influenced by other factors such as allometry. It is still unknown whether this form-function disconnect also exists at smaller evolutionary scales, for example within specialized ecological guilds. Vultures are a diverse guild of 23 extant species in two families (Accipitridae and Cathartidae) that exhibit evolutionary convergence as a result of highly specialized feeding ecology. Vultures are the only known obligate scavengers among vertebrates and are usually grouped together under this single dietary category, but within this specialized diet there are three distinct, species-specific feeding strategies termed ripper, gulper, and scrapper. We use three-dimensional geometric morphometrics to quantify the relative contributions of feeding ecology, allometry, and phylogeny on vulture skull shape, along with several non-vulture raptors of similar size, range and ecology. Families show clear separation in shape, but phylogenetic signal is comparatively weak (Kmult = 0.33). Taking into account the influence of phylogeny, skull shape is not significantly correlated with either skull size or feeding type, but there are examples of strong, significant convergence and parallel shape evolution across feeding groups. Furthermore, skull shape performs strongly in predicting feeding ecology in a phylogenetic discriminant function analysis. These findings highlight the importance of detailed assessment of feeding behavior in studies of ecomorphology, rather than broader dietary categories alone, and reveal that ecology can be readily inferred from form given appropriate information.
 

Users who are viewing this thread

Back
Top