• Welcome to BirdForum, the internet's largest birding community with thousands of members from all over the world. The forums are dedicated to wild birds, birding, binoculars and equipment and all that goes with it.

    Please register for an account to take part in the discussions in the forum, post your pictures in the gallery and more.
ZEISS DTI thermal imaging cameras. For more discoveries at night, and during the day.

Evolution of the pectoral girdle in pennaraptorans (1 Viewer)

albertonykus

Well-known member
Wu, Q., J.K. O’Connor, S. Wang, and Z. Zhou (2024)
Transformation of the pectoral girdle in pennaraptorans: critical steps in the formation of the modern avian shoulder joint
PeerJ 12: e16960
doi: 10.7717/peerj.16960

Important transformations of the pectoral girdle are related to the appearance of flight capabilities in the Dinosauria. Previous studies on this topic focused mainly on paravians yet recent data suggests flight evolved in dinosaurs several times, including at least once among non-avialan paravians. Thus, to fully explore the evolution of flight-related avian shoulder girdle characteristics, it is necessary to compare morphology more broadly. Here, we present information from pennaraptoran specimens preserving pectoral girdle elements, including all purportedly volant taxa, and extensively compare aspects of the shoulder joint. The results show that many pectoral girdle modifications appear during the evolution from basal pennaraptorans to paravians, including changes in the orientation of the coracoid body and the location of the articulation between the furcula and scapula. These modifications suggest a change in forelimb range of motion preceded the origin of flight in paravians. During the evolution of early avialans, additional flight adaptive transformations occur, such as the separation of the scapula and coracoid and reduction of the articular surface between these two bones, reduction in the angle between these two elements, and elongation of the coracoid. The diversity of coracoid morphologies and types of articulations joining the scapula-coracoid suggest that each early avialan lineage evolved these features in parallel as they independently evolved more refined flight capabilities. In early ornithothoracines, the orientation of the glenoid fossa and location of the acrocoracoid approaches the condition in extant birds, suggesting a greater range of motion in the flight stroke, which may represent the acquisition of improved powered flight capabilities, such as ground take-off. The formation of a new articulation between the coracoid and furcula in the Ornithuromorpha is the last step in the formation of an osseous triosseal canal, which may indicate the complete acquisition of the modern flight apparatus. These morphological transitions equipped birds with a greater range of motion, increased and more efficient muscular output and while at the same time transmitting the increased pressure being generated by ever more powerful flapping movements in such a way as to protect the organs. The driving factors and functional adaptations of many of these transitional morphologies are as yet unclear although ontogenetic transitions in forelimb function observed in extant birds provide an excellent framework through which we can explore the behavior of Mesozoic pennaraptorans.
 

Users who are viewing this thread

Back
Top