• Welcome to BirdForum, the internet's largest birding community with thousands of members from all over the world. The forums are dedicated to wild birds, birding, binoculars and equipment and all that goes with it.

    Please register for an account to take part in the discussions in the forum, post your pictures in the gallery and more.
ZEISS DTI thermal imaging cameras. For more discoveries at night, and during the day.

Motacillidae (14 Viewers)

Mike, I don't understand how this is possible.
Neither do I, Peter, but now I can't see the post citing the in-press Guallar & Figuerola article. It looks like a glitch somewhere was just temporary. The only paper I can find with that author combination is from 2016!
MJB
 
Alexander Hellquist, Fredrik Friberg, Petter Haldén, Peter Schmidt, Ming Ma, Gou Jun, Urban Olsson and Per Alström. 2021. Taxonomic status of grey-headed Yellow Wagtails breeding in western China. Avian Research 12: 53.
Taxonomic status of grey-headed Yellow Wagtails breeding in western China - Avian Research (Open access)

Abstract
Background: Field studies from 2011 onwards have demonstrated the presence of a breeding population of Yellow Wagtails (Motacilla flava) in the Xinjiang Uygur Autonomous Region, China that is phenotypically distinct from known subspecies occurring in Asia. Here we describe the plumages and vocalisations of this population and discuss its taxonomic status.

Methods: The analysis of plumage is based on field studies and photos available online. Recordings of vocalisations are compared with recordings from other Yellow Wagtail populations, and differences are analysed based on sonograms. Mitochondrial DNA from one individual is compared to other Yellow Wagtail taxa.

Results: Unlike M. flava subspecies breeding in or near Xinjiang, males in the studied population show a blue-grey head without prominent white supercilium, being most similar to the widely disjunct M. f. cinereocapilla. They differ from the similarly widely allopatric M. f. thunbergi, which might occur as a migrant or vagrant in Xinjiang, by on average cleaner yellow breast and more extensive white on the throat, and from the widely disjunct M. f. plexa and M. f. macronyx, which might also occur on migration in that area, by softer contact calls and slower pace of song. Females are similar to female M. f. feldegg in plumage. The mitochondrial ND2 tree shows the single sample from Xinjiang to be nested in the clade of western Yellow Wagtail taxa.

Conclusion: We discuss whether the Xinjiang breeding population could represent an intergrade between subspecies breeding nearby, or whether it is better regarded as a separate as yet unrecognized subspecies. We argue that the localization of its apparent range in relation to other subspecies along with fairly consistent male and female plumages suggest that it is more likely to represent an undescribed taxon, but conclude that more research is needed to firmly establish its status.
 
Alexander Hellquist, Fredrik Friberg, Petter Haldén, Peter Schmidt, Ming Ma, Gou Jun, Urban Olsson and Per Alström. 2021. Taxonomic status of grey-headed Yellow Wagtails breeding in western China. Avian Research 12: 53.
Taxonomic status of grey-headed Yellow Wagtails breeding in western China - Avian Research (Open access)

Abstract
Background: Field studies from 2011 onwards have demonstrated the presence of a breeding population of Yellow Wagtails (Motacilla flava) in the Xinjiang Uygur Autonomous Region, China that is phenotypically distinct from known subspecies occurring in Asia. Here we describe the plumages and vocalisations of this population and discuss its taxonomic status.

Methods: The analysis of plumage is based on field studies and photos available online. Recordings of vocalisations are compared with recordings from other Yellow Wagtail populations, and differences are analysed based on sonograms. Mitochondrial DNA from one individual is compared to other Yellow Wagtail taxa.

Results: Unlike M. flava subspecies breeding in or near Xinjiang, males in the studied population show a blue-grey head without prominent white supercilium, being most similar to the widely disjunct M. f. cinereocapilla. They differ from the similarly widely allopatric M. f. thunbergi, which might occur as a migrant or vagrant in Xinjiang, by on average cleaner yellow breast and more extensive white on the throat, and from the widely disjunct M. f. plexa and M. f. macronyx, which might also occur on migration in that area, by softer contact calls and slower pace of song. Females are similar to female M. f. feldegg in plumage. The mitochondrial ND2 tree shows the single sample from Xinjiang to be nested in the clade of western Yellow Wagtail taxa.

Conclusion: We discuss whether the Xinjiang breeding population could represent an intergrade between subspecies breeding nearby, or whether it is better regarded as a separate as yet unrecognized subspecies. We argue that the localization of its apparent range in relation to other subspecies along with fairly consistent male and female plumages suggest that it is more likely to represent an undescribed taxon, but conclude that more research is needed to firmly establish its status.
I would bet that this isn't the last potential new taxon within the Yellow/Citrine Wagtail complex...!
MJB
 
Alexander Hellquist. 2021. Identification and taxonomy of northern and eastern yellow wagtails – new pieces to the puzzle. Dutch Birding 43: 333-370.
 
Comparative mitogenomics of the genus Motacilla (Aves, Passeriformes) and its phylogenetic implications
Chao Yang, Xiaojuan Du, Yuxin Liu, Hao Yuan, Qingxiong Wang, Xiang Hou, Huisheng Gong, Yan Wang, Yuan Huang, Xuejuan Li, Haiyan Ye

ZooKeys 1109: 49-65. Comparative mitogenomics of the genus Motacilla (Aves, Passeriformes) and its phylogenetic implications


Abstract​


The genus Motacilla belongs to Motacillidae (Passeriformes), where mitochondrial features are poorly understood and phylogeny is controversial. Whole mitochondrial genome (mitogenome) data and large taxon sampling are considered to be ideal strategies to obtain this information. We generated four complete mitogenomes of M. flava, M. cinerea, M. alba and Dendronanthus indicus, and made comparative analyses of Motacilla species combined with mitogenome data from GenBank, and then reconstructed phylogenetic trees based on 37 mitochondrial genes. The mitogenomes of four mitogenome sequences exhibited the same gene order observed in most Passeriformes species. Comparative analyses were performed among all six sampled Motacilla mitogenomes. The complete mitogenomes showed A-skew and C-skew. Most protein-coding genes (PCGs) start with an ATG codon and terminate with a TAA codon. The secondary structures of RNAs were similar among Motacilla and Dendronanthus. All tRNAs except for trnS(agy) could be folded into classic clover-leaf structures. Three domains and several conserved boxes were detected. Phylogenetic analysis of 90 mitogenomes of Passeriformes using maximum likelihood (ML) and Bayesian inference (BI) revealed that Motacilla was a monophyletic group. Among Motacilla species, M. flava and M. tschutschensis showed closer relationships, and M. cinerea was located in a basal position within Motacilla. These data provide important information for better understanding the mitogenomic characteristics and phylogeny of Motacilla.
 
Lois Rancilhac, Erik D. Enbody, Rebecca Harris, Takema Saitoh, Martin Irestedt, Yang Liu, Fumin Lei, Leif Andersson, Per Alström (2023). Introgression underlies phylogenetic uncertainty but not parallel plumage evolution in a recent songbird radiation bioRxiv 2023.04.25.538255

Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the "black-and-white wagtails", a group of five species in the songbird genus Motacilla: one species, the White Wagtail (M. alba), shows wide intra-specific plumage variation, while the four others form two pairs of very similar-looking species (African Pied Wagtail M. aguimp + Mekong Wagtail M. samveasnae and Japanese Wagtail M. grandis + White-browed Wagtail M. maderaspatensis, respectively). However, the two species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a "complete evidence" phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting and introgression. We then investigated the variation in phylogenetic signal across the genome, to quantify the extent of discordance across genomic regions, and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting M. alba and M. aguimp as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between M. alba and M. grandis. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investigation of genome-wide patterns of gene tree heterogeneity to help understanding the mechanisms underlying phenotypic evolution.
 
Mentioned by George Sangster on the Dutch Birding website:

Doniol-Valcroze, P, Coiffard, P, Alström, P, Robb, MS, Dufour, P & Crochet, PA 2023. Molecular and acoustic evidence support the species status of Anthus rubescens rubescens and Anthus [rubescens] japonicus (Passeriformes: Motacillidae). Zootaxa (in press).

Abstract: The Buff-bellied Pipit Anthus rubescens comprises two allopatric subspecies groups: A. r. rubescens and A. r. alticola in North America and A. [r.] japonicus in north-east Asia. Despite their great morphological resemblance in breeding plumage, most individuals can be assigned to one or the other subspecies group in non-breeding plumage. Allopatric distributions, morphological differentiation and previously reported molecular divergence suggested the need for additional taxonomic study to assess the rank of these two populations. To resolve the taxonomy of the Buff-bellied Pipit species complex we analysed i) two mitochondrial DNA (mtDNA) loci and ii) nine bioacoustic parameters across 69 sound recordings (338 flight calls) recovered from public databases using principal component analysis and Euclidean distance measures. By comparing our mtDNA and call divergence measures with similar values measured between long-recognised species pairs of the genus, we show that the level of mitochondrial and acoustic divergence between the two Buff-bellied Pipit subspecies groups is typical of species-level divergence in the genus Anthus. Therefore, we recommend splitting the Buffbellied Pipit species complex into two species: Anthus rubescens (American Pipit) and Anthus japonicus (Siberian Pipit). Our results also suggest that the Water Pipit A. spinoletta deserves taxonomic reassessment as its lineages are highly divergent in acoustics and mtDNA, while mtDNA relationships suggest paraphyly relative to the Rock Pipit A. petrosus. Our work highlights the crucial importance of integrative approaches in taxonomy and the usefulness of bioacoustics in studying cryptic diversity.
 
Mentioned by George Sangster on the Dutch Birding website:

Doniol-Valcroze, P, Coiffard, P, Alström, P, Robb, MS, Dufour, P & Crochet, PA 2023. Molecular and acoustic evidence support the species status of Anthus rubescens rubescens and Anthus [rubescens] japonicus (Passeriformes: Motacillidae). Zootaxa (in press).

Abstract: The Buff-bellied Pipit Anthus rubescens comprises two allopatric subspecies groups: A. r. rubescens and A. r. alticola in North America and A. [r.] japonicus in north-east Asia. Despite their great morphological resemblance in breeding plumage, most individuals can be assigned to one or the other subspecies group in non-breeding plumage. Allopatric distributions, morphological differentiation and previously reported molecular divergence suggested the need for additional taxonomic study to assess the rank of these two populations. To resolve the taxonomy of the Buff-bellied Pipit species complex we analysed i) two mitochondrial DNA (mtDNA) loci and ii) nine bioacoustic parameters across 69 sound recordings (338 flight calls) recovered from public databases using principal component analysis and Euclidean distance measures. By comparing our mtDNA and call divergence measures with similar values measured between long-recognised species pairs of the genus, we show that the level of mitochondrial and acoustic divergence between the two Buff-bellied Pipit subspecies groups is typical of species-level divergence in the genus Anthus. Therefore, we recommend splitting the Buffbellied Pipit species complex into two species: Anthus rubescens (American Pipit) and Anthus japonicus (Siberian Pipit). Our results also suggest that the Water Pipit A. spinoletta deserves taxonomic reassessment as its lineages are highly divergent in acoustics and mtDNA, while mtDNA relationships suggest paraphyly relative to the Rock Pipit A. petrosus. Our work highlights the crucial importance of integrative approaches in taxonomy and the usefulness of bioacoustics in studying cryptic diversity.

On line
 
A further conclusion of this paper concerns Water Pipit:

'We refrain from making formal taxonomic recommendations here for the various subspecies of Anthus
spinoletta because our samples of calls and mtDNA are small, but we note that they are also allopatric taxa with
a similar amount of divergence in calls and mtDNA as A. spinoletta and A. petrosus. A dedicated study on this
complex, including more call recordings, songs, breeding and non-breeding plumage, a larger sampling of mtDNA
and (ideally) nuclear DNA would probably reach a similar conclusion and support a three-way split (spinoletta vs
coutellii vs blakistoni), as already recommended for coutellii by Garner et al. (2015).'

Brian
 
Rancilhac, L., E.D. Enbody, R. Harris, T. Saitoh, M. Irestedt, Y. Liu, F. Lei, L. Andersson, and P. Alström (2023)
Introgression underlies phylogenetic uncertainty but not parallel plumage evolution in a recent songbird radiation
Systematic Biology (advance online publication)
doi: 10.1093/sysbio/syad062

Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the “black-and-white wagtails”, a group of five species in the songbird genus Motacilla: one species, Motacilla alba, shows wide intra-specific plumage variation, while the four others form two pairs of very similar-looking species (M. aguimp + M. samveasnae and M. grandis + M. maderaspatensis, respectively). However, the two species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a “complete evidence” phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting (ILS) and introgression. We then investigated the variation in phylogenetic signal across the genome, to quantify the extent of discordance across genomic regions, and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting M. alba and M. aguimp as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between M. alba and M. grandis. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investigation of genome-wide patterns of gene tree heterogeneity to help understanding the mechanisms underlying phenotypic evolution.
 

Users who are viewing this thread

Back
Top